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ABSTRACT 

Sharp bounds are obtained for the coefficients of inverses of univalent func- 

tions in the class ~(p) by using results on integral means and generalized 
Grunsky inequalities. A new and elementary proof is given for a result due 
to LSwner about sharp bounds for coefficients of inverses of functions in 
the class S. 

1. I n t r o d u c t i o n  

Let  ~ denote  the  fami ly  of univalent  funct ions 

oo 

= ¢ + 

rt-----0 

in / i  = {~ : 1 < I~1 < co}, the  exter ior  of the  uni t  d isk  A in the  complex  p lane  

C. If  ( = G(w) is the  inverse of a funct ion g E E,  then G has  an  expans ion  

oo 

(i.I) G(w) = w + ES.w-" 
n=O 

near  w = oo. Using a va r i a t iona l  me thod ,  Ne t anyahu  [Ne] ob t a ined  the  following 
sha rp  es t imates .  

Received August 4, 1992 and in revised form April  15, 1993 

129 



130 S. YANG Isr. J. Math. 

1.2. THEOREM ([Ne, Theorem, p.339]): Let g • E and g(~) # O. I f  the inverse 

o[ g has expansion (1.1) near c¢, then 

(1.3) IBol _< 2 and IB.I _< 
(2n)! 

n!(n + 1)! 

for n = 1, 2, . . . .  The equality holds in (1.3) for a single n only ff  

g(¢) = ~ + 2e ia + e21l~ -1 

/'or some real t3. 

In Netanyahu's result, the assumption that  g(¢) # 0 is crucial. This naturally 

leads to the following question. What  happens if g • E vanishes at some point? 

The purpose of this paper is to estimate the inverse coefficients of g • Z when 

g vanishes at some point in A by using the integral mean method (see [Ba] and 

[BS]) and by using some generalized Grunsky inequalities (see [Sc] and [Re]). In 

this paper we also give a new and elementary proof for a result due to L6wner 

[LS] about the inverse coefficients of univalent functions in the well known class 

S. 

2. Integral mean and generalized Grunsky inequalities 

For 1 < p < c~ let E(p) denote the class of all meromorphic univalent functions 

g • E w i t h g ( - p )  - 0. Next for 0 < p < 1 l e t  S(p) denote the class of all 

meromorphic univalent functions f ( z )  in A = {z : [z I < 1} with the normalization 

f(0) = 0, f ' (0)  = 1, and f ( - p )  : c¢. By using a powerful method introduced 

by Baernstein [Ba], Kirwan and Schober [KS] established the following integral 

mean inequality. 

(2.1) I/o2- II(re'a)l~dO <_ ~ Ikp( )l-adO 

for all I • S(p), 0 < r < I, and -oo < a < oo, where 

(2.2) kp(¢) = ~ + (2 + p - l )  + ~-1 

for ~ = z-* • ~ .  Using (2.1) and the relation that  

(2.3) g(() • E(p) ¢=¢, fCz) = g(I / z )  -1 • SO/p) ,  
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one can easily derive that for g(() E E(p), 
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(2.4) 
1/? 1/? 

[g(rei°)[ ~dO < ~ [kp(rei°)[ ado 

for all 1 < r < oo and - o o  < a < co. 

Another preliminary result we need is the integral form of an exponentiated 

Grunsky inequality. It is well known that for g E E we have the following 

generalized Grunsky inequality (see, for example, [Du, Theorem 4.3]) 

l  sZ log I 
j=l k=l g(zj) g((k) 

<_ aj a~ log 1 E ~/~t log 1 
j , s = l  I - -  (ZJ~'s)--I k,t=l 1 - -  ( ¢ k ~ t )  - 1  

whenever n > 1 is an integer, {aj},  {/~k} c C and {zj},  {~k} C ~X. It is also 

known that this inequality can be exponentiated to the following form (see, for 

example, [Re, 2.37]). For g E E, 

(2.5) 
I 

j = l  k = l  

1 "~ 1 

j , s = l  1 - -  (ZJZ ' s ) - - I  k , t = l  - -  ( ¢ k ~ t ) - i  

whenever n > 1 is an integer, {aj},  {Bk} C C and {zj}, {~k} C/~.  

Now we transform inequality (2.5) into an integral form which will be needed 

in what follows. 

2.6. LEMMA: For g E E let G be the inverse of g and suppose G is analytic in 

p < [w[ < oo. Then for any continuous functions F1 and F2 on Iwl = r > p, 

(2z) I~l=l~l=r>P 
oo  oo  

~ = o  b,,l=," " = "  I,~l=," 
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Proof: 
written as 

(2.s) 

and 

(2.9) 

S. YANG Isr. J. Math. 

We first observe that  the two sums on the right side of (2.5) can be 

- j ~ s ( z s s )  ' I ~ - j z j - ' l  ~ 
i=0 j , s=l  i=0 j = l  

~ ~k~t(~k~) -~= ~ [ ~-~ f~k~-~[ 2, 
i=0 k , t= l  i=0 k= l  

respectively. By the assumption all the integrands in (2.7) are continuous, and 

hence integrable on the respective integral ranges. 

For j = 1 , 2 , . . . , n ,  let ~j = 2jr~n, 

aj = ?'1 (re iOj )(ire i°j ) ~ ,  ~j = F2 (re ~Oj ) (ire i°j ) 27rn 

and 

z j  = Cj = C ( r e  ~°~ ). 

Then the double sum on the left side of (2.5) can be written as 

(2.10) re.vj _ reiOk 
j = l  k=l 

This expression tends to the double integral on the left side of (2.7) as n ap- 

proaches c¢. Furthermore, 

Z akZk-J , f Fl(w)G(w)-Jdw 
k=l  iw[= r 

and 
n 

E ~ k ~ k  -1 , / F2(w)G(w)-Jdw 
k=l [w[=r 

as n --* oo .  Thus (2.5) yields (2.7) by letting n ~ oo. This completes the proof 

of Lemma 2.6. | 
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3. I n v e r s e  coeff ic ients  o f  t h e  class E(p) 

By using the integral mean inequality (2.1), Baernstein and Schober [BS] ob- 

tained sharp bounds for the inverse coefficients of univalent functions f E S(p). 

In this section we make use of both the integral mean inequality (2.4) and the 

strengthened Grunsky inequality (2.7) to obtain some sharp bounds for the in- 

verse coefficients of univalent functions g E E(p), 1 < p < co. 

If G is the inverse of a function g E E(p), then G admits the expansion (1.1) 

near w = co and another expansion 

o o  

(3.1) G(w) = - p  + E A"wn 
n = l  

near w = 0. In the family E(p) the function kp(~) , defined in (2.2), plays a similar 

role as the Koebe function does in the family S. Suppose that its inverse function 

Kp(w) has expansions 

(3.2) Kp(w) = ~ + ~ Kp,,~w -n 
n = 0  

near w = co and 

(3O 

(3.3) Kp(w) = -p + E Lv, ,w" 
n----1 

near w = 0, respectively. Then it follows that  

(3.4) 
Kp,0 = lim (Kv(w) - w) 

(.O -....s. OO 

= lim ((  - k p ( ( ) )  = - ( p  + p - l ) ,  
~---*oo 

and by Cauchy formula 

(3.5) 

= 1 

/ 2n i 1 /  
- 2mri kP(~)nd( 

Kl=r>p 

n k =  o k + l  
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and 

(3.6) 

1 /  
Lp,n = 2 n T r i  kP(ff)-"dff 

I¢l=r<p 

= i ~ - ~ ( n + k l l ) ( n + k  )p-(n+2k+l, 
= - , ~  n -  n - 1  

k=O 

The main result of this paper is the following. 

3.7. THEOREM: If  G is the inverse of a function g 6 E(p) which has expansions 

(1.1) and (3.1) near w = oo and w = 0, respectively, then 

(3.8) 1/301 < IKp,ol = p_~_p--1 ,  

and for n = 1, 2 , . . . ,  

(3.9) IB2~_ll _< IKp,2,-ll, 

(3.10) 

and 

(3.11) 

IB2~I _< ~/IKp,2~-dlKp,2~+l 

IA.I <__ ILp,~l. 

Equality for a single coefficient holds in (3.8), (3.9) or (3.11) only ifg(~) = kp(ff). 

The proof of Theorem 3.7 depends on the following lemma which is a conse- 

quence of Lemma 2.6. 

3.12. LEMMA: Let G be the inverse of g E E and let G and G -"~ have expansions 

(1.1) and 

oo 

(3.13) GCw) -'-- -", 

respectively, near w = oo. Then for n = 1, 2 , . . . ,  

(3.14) [B2n-l[ < ~ IB(,-m)l 2 
r a = l  
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and 

(3.15) 

Proof." 

Then 

n + l  

IB2,,I 2 < IB -, )I2 . (-m) 2 _ a-Sn+ 1 • 

r a = l  r n = l  

We may choose I < p < co so that G(w) is analytic in p < lwI < oo. 

a ( w )  - . - 1  
- I + Z x--' ~nw -i-1 w i-,, 

W --  ~J 
n = l  /=0  

is analytic in p < Iwl, I~l < c~ with respect to each variable. For any integers 

j ,  k > 0, let 

Fl(W) = w j and F2(w) = w k 

in (2.7). Then by Cauchy formula, the double integral on the left side of (2.7) 

reduces to 

Similarly, 

oo n--1 

Z Z B~ / /  wJ-i-Xwk+i-~dwdw 
n = l  i=0  i w l = l w l _ r > p  

oo 

= 2~i Z B. / wk+J-ndw 
n=j .+ l [w l_r  

= (2ri)2Bk+j+l. 

{ - (-,0 
wJG(w)-ndw = 2mBj+l  , 

0, 
Iwl=T 

i f 0 <  n _< j + 1, 

otherwise. 

Thus it follows from (2.7) that  

j + l  k+l  

(3.16) ]Bj+k+l] 2 --< ~ B(-m)j+1 2 Z ~}+IR(-'~) 2 
m=l m=l 

for all j ,  k _> 0. Letting j = k = n - 1 and letting j = n - 1, k = n in (3.16) yield 

(3.14) and (3.15) , respectively, as desired. | 

3.17. Remark: The equality in (3.14) holds for any n if g(() = kn(() , where 

kn(( ) is defined in (2.2). To see this we note that  (3.14) is derived from (2.7) 

by letting Fl(w) = F2(w) = w '*-1. Thus we only need to show that  equality i~ 
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(2.7) holds for g = kp in this particular case. In fact, under change of variables 

w = kp(z) and w = kv(~), the double integral on the left side of (2.7) reduces to 

o o  

(3.18) Z (  / k~(z)kp(z)'~-lz-Jdz) 2, 
j=O Iz[=r'  

while both sums on the right side of (2.7) reduce to 

o o  

(3.19) Z [  / kp (z)kp(z)n-lz-jdzl2" 
j=0 Izl=r' 

Since for each j ,  the integral in (3.18) is a pure imaginary number, the expressions 

in (3.18) and (3.19) have the same absolute value. Therefore (2.7) holds with 

equality in this case, and hence the equality in (3.14) holds when g = kp. 

3.20. Remark: Inequality (3.14) can also be derived from a Grunsky inequality 

of functional type, see for example [Sc, (3)], by choosing appropriate functionals 

on the space of meromorphic functions. 

Proof of Theorem 3. 7". To prove (3.8) we observe that if g • ~(p) then f(z) = 
g(1/z) -1 • S(1/p) and the magnitude of B0 equals to the magnitude of the 

second coefficient of the inverse function of f .  Thus inequality (3.8) and its 

sharpness follows from [BS, Theorem 2 (8), n=2]. 

To prove (3.9) and (3.10), we expand 

o ~  

(3.21) G(w)-m = Z B(-m)w-"'  
n~---ro. 

(3.22) 
' O0 

, ,(-m) -k 
= - - n  -~- ~ IV1 k OJ 

k = l  

(3.23) 
o o  

KP(w)-'~= Z K(-m)w-'~' 
n . ~ - m  

and 

(3.24) w[Kp(w)-'n] ' (~(-m) ,-k 
Kp(w)_.~ = - n  + Z " % k  - 

k = l  
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near  w = oc. By Cauchy formula  again, 

m wkC'(w) dw 
M~-m)- 2-~i f ~(w) 

_ m f 
2~i g(~)k~-ld~ 

I(1=~ 

_ m f02~ 2~r g(reW)kdO" 

Since g is univalent i n / ~  and g(cc)  = ec, g(re i°) is bounded  as r ~ 1 +. Thus  

let t ing r -~ 1 +, the integral  mean  inequali ty (2.4) yields 

(3.25) 

m [~ [M~-~)I <- ~A Ig(ei°)lkdO 

m f27r 
<- ~ Jo Ikp(e~°)lkdO 

_ ~ t  f 2 7 r  

- ~ Jo kp(elO)kdO = ~(-m)~p,k 

for k = 1, 2 , . . . .  An a rgument  similar to [BS, p.80] shows tha t  for k = 1 we have 

equali ty th roughout  (3.25) only if g(~) = kp(¢). Now we can use the induct ion 

me thod  to prove tha t  

(3.26) IB( -m)l _< IK (-m)l 

for all n > m. I t  is easy to see tha t  (3.26) holds for n = m since 

B ( -m)  = K ( -m)  = 1. 

Suppose tha t  (3.26) holds for all n = m + l ,  m + 2 , . . .  , N - 1 .  From the expansions 

(3.21) and (3.22) it follows tha t  the coefficients B ( -m)  and M (-m) satisfy the k 

ident i ty 
? l - - ? n  

-(n - m)B (-m) E M(-m) n(-m) = k ~ n - - k  " 

k=l  

( : ( -m)  satisfy Similarly, K ( -m)  and ~p,k 

n ~ m  

- ( n  - re )K(:  m) c ( -m)  ,, + ' )  
"= p , k  a ~ ' n - k  " 

k=l  
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Since t~(-m) < 0, it follows that  K (-m) > 0 for all n > rn. Thus by (3.25) and 
" ' p , k  - -  - -  - -  

the assumption on (3.26), we obtain 

(3.27) 

(N - m)lB(-~)l < 

N - - ? T ~  

Z 
k=l 

N-ra 

k=l 

Mk(--•) u(-,~) 
~ N - k  

Cp(-m) w(-m) 
, k  * ~  N - k  

N - r n  

~,,~ r~(-")v(-'~)= " ' N - k  ( N  - m ) I K ( ~ - " ) [  • 

k = l  

This proves (3.26). Thus it follows from (3.14), (3.15) and Remark 3.17 that  

IB2,.-ll _< ~ IK~(-'~)I= = IKp,=.-~I 
rn-----1 

and n-I-1 
[B2n12 -~ ~ IKnrn)[2 Z [K(~l)]2--IKp'2n-I[[Kp'2n+I[" 

m---1 rn----1 

This proves the inequalities (3.9) and (3.10). 

For n = 1 (3.9) reduces to IBll <_ 1. Since B1 = -b l ,  the equality in (3.9) 

holds for n = 1 only if Ibll = 1. By the well known area principle for the class 

E, see for example [Du, Theorem 2.1], this can happen only if 9 = kp. From the 

process of deriving (3.9), one can see that the equality in (3.9) holds for n > 1 

only if (3.25) holds with equality for k = 1. This can happen only if g = kp. 

For the proof of (3.11), we expand the following functions 

wG'(w) o0 
(3.28) ~ = Z N " w "  

n=l 

and 

~g~(~) 
(3.29) ~ = E D,,nwn 

n=l 

near w = 0. Similar to (3.25) we obtain 

(3.30) 

lfo2" IN.I _< ~ Ig(~'°)l-~dO 

i /0 2~ <- 2~ Ikp(ei°)l-ndO = Dp,n 
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and the equality holds for n = 1 only ifg = kp. From expansions (3.1) and (3.28), 

it follows that  
n--1 

nAn = -pN,~ + E NiAn-i. 
i=1 

Similarly, Lp,n and Dp,n satisfy 

n-- I  

nLp,,~ = -pDp,~ + E Dp,iLp,n-i. 
i----1 

By induction method, one can easily show that  

n--1 

nlA.I _< plN.I + ~ INdlA.-~I 
i----1 

n--1 

< pUp,,~ + E IDP,~IILP, "-il = nlLp, '~1 
i----1 

Thus (3.11) follows. Furthermore, the equality in (3.11) can occur for a single n 

only if it can occur for n = 1. And by (3.30) it can happen only if g(~) = kp(~). 

This completes the proof of Theorem 3.7. | 

3.31. Remarks: Inequality (3.10) is asymptotically sharp as n --* c¢. To verify 

this we note that 

(3.32) 
IKp,n+ll __ n + l  i!(n+l-i)!(i+l)!(n-i)!  

n E i = 0  i!(n--i)!(i+l)!(n--i--1)! 

Since p > 1, it is easy to see that both sums in (3.32) converge as n --* oc. Thus 

[Kp,n+l[/[Kp,n[ converges as n --* oo. This proves that  

I/~p,~,.I 2 
IKp,2n- l l lKp,2n+ll  

as n -* ~ .  Thus (3.10) is asymptotically sharp. It is still an open problem tc 

obtain the sharp upper bound for IB2nl. But it is natural to conjecture that  

IB2.1 _< IKp,2.1. 

The proof of Theorem 3.7 depends on both the integral mean inequality (2.4) 

and Lemma 3.12. We point out that  the method of Baernstein and Schober 
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[BS] by which they obtained sharp estimates for the class S(p) does not apply 

immediately to the class E(p) which has been considered here. 

Obviously the method that is used to establish Theorem 3.7 applies immedi- 

ately to the class of nonvanishing meromorphic univalent functions which Ne- 

tanyahu [Ne] considered. But the resulting estimates are sharp only for odd 

integers and zero. 

4. T h e  class S 

Let S denote the well known class of all analytic univalent functions f ( z )  in A 

with the normalization f(0) = 0 and if(0) = 1. Then the inverse function F(w) 

of f • S has the expansion 

(4.1) F(w) = w + ~ A,~w ~ 
n----2 

near w -- O. Using a variational method, LSwner [LS] obtained the following 

sharp estimates. 

4.2 .  THEOREM ([LS]): If  F(w) is the inverse of a function f • S and has 

expansion (4.1) near w = O, then 

(2n)! 
(4.3) IAnl < 

n!(n + 1)! 

for n = 2, 3 , . . . .  The equality occurs for a single coefficient if and only i f  f (z) is 

the Koebe function k(z) = z/(1 - z) 2 or its rotation. 

Alternate proofs have been given by several authors, see for example [SS], [Fi] 

and [BS]. Here we give another new and elementary proof for this remarkable 

result. 

Proof of Theorem 4.2: For n = 0, 1, 2 , . . . ,  let 

(2,0! 
cn - n!(n + 1)!" 

Then the inverse function K(w) of k(¢) = ( + ~-1 E E has the expansion 

o o  

K(oa) = ~a - E c"°a-(2n+1) 
n=0 
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near w -- oc. From the identity 

~2 = w g ( w ) -  1 = (g (w) )  2 

we obtain that  

n--1 

(4.4) cn ~- E alert--i--l" 

141 

(4.5) 

we obtain 

Then from the identity 

G(w-1 )F(w)  = 1 

n-2 

An = -BoA,~- I  - E B iAn-~- l .  
i=I 

Therefore, by induction, (4.3) follows from (1.3) and the identities (4.4) and (4.5). 
| 

4.6. Remark: The above proof suggests an elementary way of deriving sharp 

bounds for the inverse coefficients of functions defined in A from sharp bounds 

about the corresponding classes of functions defined in /~. Unfortunately, this 

process can not be reversed. 
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