ESTIMATES FOR COEFFICIENTS OF UNIVALENT FUNCTIONS FROM INTEGRAL MEANS AND GRUNSKY INEQUALITIES

ΒY

SHANSHUANG YANG

Department of Mathematics UCLA, Los Angeles, CA 90024, USA

ABSTRACT

Sharp bounds are obtained for the coefficients of inverses of univalent functions in the class $\Sigma(p)$ by using results on integral means and generalized Grunsky inequalities. A new and elementary proof is given for a result due to Löwner about sharp bounds for coefficients of inverses of functions in the class S.

1. Introduction

Let Σ denote the family of univalent functions

$$g(\zeta) = \zeta + \sum_{n=0}^{\infty} b_n \zeta^{-n}$$

in $\tilde{\Delta} = \{\zeta : 1 < |\zeta| < \infty\}$, the exterior of the unit disk Δ in the complex plane C. If $\zeta = G(\omega)$ is the inverse of a function $g \in \Sigma$, then G has an expansion

(1.1)
$$G(\omega) = \omega + \sum_{n=0}^{\infty} B_n \omega^{-n}$$

near $\omega = \infty$. Using a variational method, Netanyahu [Ne] obtained the following sharp estimates.

Received August 4, 1992 and in revised form April 15, 1993

1.2. THEOREM ([Ne, Theorem, p.339]): Let $g \in \Sigma$ and $g(\zeta) \neq 0$. If the inverse of g has expansion (1.1) near ∞ , then

(1.3)
$$|B_0| \le 2 \text{ and } |B_n| \le \frac{(2n)!}{n!(n+1)!}$$

for n = 1, 2, ... The equality holds in (1.3) for a single n only if

$$g(\zeta) = \zeta + 2e^{i\beta} + e^{2i\beta}\zeta^{-1}$$

for some real β .

In Netanyahu's result, the assumption that $g(\zeta) \neq 0$ is crucial. This naturally leads to the following question. What happens if $g \in \Sigma$ vanishes at some point? The purpose of this paper is to estimate the inverse coefficients of $g \in \Sigma$ when g vanishes at some point in $\tilde{\Delta}$ by using the integral mean method (see [Ba] and [BS]) and by using some generalized Grunsky inequalities (see [Sc] and [Re]). In this paper we also give a new and elementary proof for a result due to Löwner [Lö] about the inverse coefficients of univalent functions in the well known class S.

2. Integral mean and generalized Grunsky inequalities

For $1 let <math>\Sigma(p)$ denote the class of all meromorphic univalent functions $g \in \Sigma$ with g(-p) = 0. Next for 0 let <math>S(p) denote the class of all meromorphic univalent functions f(z) in $\Delta = \{z : |z| < 1\}$ with the normalization f(0) = 0, f'(0) = 1, and $f(-p) = \infty$. By using a powerful method introduced by Baernstein [Ba], Kirwan and Schober [KS] established the following integral mean inequality.

(2.1)
$$\frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^{\alpha} d\theta \le \frac{1}{2\pi} \int_0^{2\pi} |k_p(\frac{1}{re^{i\theta}})|^{-\alpha} d\theta$$

for all $f \in S(p)$, 0 < r < 1, and $-\infty < \alpha < \infty$, where

(2.2)
$$k_p(\zeta) = \zeta + (p + p^{-1}) + \zeta^{-1}$$

for $\zeta = z^{-1} \in \tilde{\Delta}$. Using (2.1) and the relation that

(2.3)
$$g(\zeta) \in \Sigma(p) \iff f(z) = g(1/z)^{-1} \in S(1/p),$$

one can easily derive that for $g(\zeta) \in \Sigma(p)$,

(2.4)
$$\frac{1}{2\pi} \int_0^{2\pi} |g(re^{i\theta})|^\alpha d\theta \leq \frac{1}{2\pi} \int_0^{2\pi} |k_p(re^{i\theta})|^\alpha d\theta$$

for all $1 < r < \infty$ and $-\infty < \alpha < \infty$.

Another preliminary result we need is the integral form of an exponentiated Grunsky inequality. It is well known that for $g \in \Sigma$ we have the following generalized Grunsky inequality (see, for example, [Du, Theorem 4.3])

$$|\sum_{j=1}^{n} \sum_{k=1}^{n} \alpha_{j} \beta_{k} \log \frac{z_{j} - \zeta_{k}}{g(z_{j}) - g(\zeta_{k})}|^{2} \\ \leq \sum_{j,s=1}^{n} \alpha_{j} \bar{\alpha}_{s} \log \frac{1}{1 - (z_{j} \bar{z}_{s})^{-1}} \sum_{k,t=1}^{n} \beta_{k} \bar{\beta}_{t} \log \frac{1}{1 - (\zeta_{k} \bar{\zeta}_{t})^{-1}}$$

whenever $n \geq 1$ is an integer, $\{\alpha_j\}, \{\beta_k\} \subset C$ and $\{z_j\}, \{\zeta_k\} \subset \tilde{\Delta}$. It is also known that this inequality can be exponentiated to the following form (see, for example, [Re, 2.37]). For $g \in \Sigma$,

(2.5)
$$|\sum_{j=1}^{n} \sum_{k=1}^{n} \alpha_{j} \beta_{k} \frac{z_{j} - \zeta_{k}}{g(z_{j}) - g(\zeta_{k})}|^{2} \leq \sum_{j,s=1}^{n} \alpha_{j} \bar{\alpha}_{s} \frac{1}{1 - (z_{j} \bar{z}_{s})^{-1}} \sum_{k,t=1}^{n} \beta_{k} \bar{\beta}_{t} \frac{1}{1 - (\zeta_{k} \bar{\zeta}_{t})^{-1}}$$

whenever $n \geq 1$ is an integer, $\{\alpha_j\}, \{\beta_k\} \subset C$ and $\{z_j\}, \{\zeta_k\} \subset \tilde{\Delta}$.

Now we transform inequality (2.5) into an integral form which will be needed in what follows.

2.6. LEMMA: For $g \in \Sigma$ let G be the inverse of g and suppose G is analytic in $\rho < |\omega| < \infty$. Then for any continuous functions F_1 and F_2 on $|\omega| = r > \rho$,

(2.7)
$$\left| \iint_{|w|=|\omega|=r>\rho} F_1(w)F_2(\omega)\frac{G(w)-G(\omega)}{w-\omega}dwd\omega \right|^2 \\ \leq \sum_{n=0}^{\infty} \left| \iint_{|w|=r} F_1(w)G(w)^{-n}dw \right|^2 \sum_{m=0}^{\infty} \left| \iint_{|\omega|=r} F_2(\omega)G(\omega)^{-m}d\omega \right|^2$$

Proof: We first observe that the two sums on the right side of (2.5) can be written as

(2.8)
$$\sum_{i=0}^{\infty} \sum_{j,s=1}^{n} \alpha_j \bar{\alpha}_s (z_j \bar{z}_s)^{-i} = \sum_{i=0}^{\infty} |\sum_{j=1}^{n} \alpha_j z_j^{-i}|^2$$

and

(2.9)
$$\sum_{i=0}^{\infty} \sum_{k,t=1}^{m} \beta_k \bar{\beta}_t (\zeta_k \bar{\zeta}_t)^{-i} = \sum_{i=0}^{\infty} |\sum_{k=1}^{m} \beta_k \zeta_k^{-i}|^2,$$

respectively. By the assumption all the integrands in (2.7) are continuous, and hence integrable on the respective integral ranges.

For $j = 1, 2, \ldots, n$, let $\theta_j = 2j\pi/n$,

$$\alpha_j = F_1(re^{i\theta_j})(ire^{i\theta_j})\frac{2\pi}{n}, \quad \beta_j = F_2(re^{i\theta_j})(ire^{i\theta_j})\frac{2\pi}{n}$$

 and

$$z_j = \zeta_j = G(re^{i\theta_j}).$$

Then the double sum on the left side of (2.5) can be written as

(2.10)
$$\sum_{j=1}^{n} \sum_{k=1}^{n} F_1(re^{i\theta_j}) F_2(re^{i\theta_k}) \frac{G(re^{i\theta_j}) - G(re^{i\theta_k})}{re^{i\theta_j} - re^{i\theta_k}} (ire^{i\theta_j}) (ire^{i\theta_k}) (\frac{2\pi}{n})^2.$$

This expression tends to the double integral on the left side of (2.7) as n approaches ∞ . Furthermore,

$$\sum_{k=1}^{n} \alpha_k z_k^{-j} \longrightarrow \int_{|w|=r} F_1(w) G(w)^{-j} dw$$

 and

$$\sum_{k=1}^n \beta_k \zeta_k^{-j} \longrightarrow \int_{|w|=r} F_2(w) G(w)^{-j} dw$$

as $n \to \infty$. Thus (2.5) yields (2.7) by letting $n \to \infty$. This completes the proof of Lemma 2.6.

3. Inverse coefficients of the class $\Sigma(p)$

By using the integral mean inequality (2.1), Baernstein and Schober [BS] obtained sharp bounds for the inverse coefficients of univalent functions $f \in S(p)$. In this section we make use of both the integral mean inequality (2.4) and the strengthened Grunsky inequality (2.7) to obtain some sharp bounds for the inverse coefficients of univalent functions $g \in \Sigma(p)$, 1 .

If G is the inverse of a function $g \in \Sigma(p)$, then G admits the expansion (1.1) near $\omega = \infty$ and another expansion

(3.1)
$$G(\omega) = -p + \sum_{n=1}^{\infty} A_n \omega^n$$

near $\omega = 0$. In the family $\Sigma(p)$ the function $k_p(\zeta)$, defined in (2.2), plays a similar role as the Koebe function does in the family S. Suppose that its inverse function $K_p(\omega)$ has expansions

(3.2)
$$K_p(\omega) = \omega + \sum_{n=0}^{\infty} K_{p,n} \omega^{-n}$$

near $\omega = \infty$ and

(3.3)
$$K_p(\omega) = -p + \sum_{n=1}^{\infty} L_{p,n} \omega^n$$

near $\omega = 0$, respectively. Then it follows that

(3.4)
$$K_{p,0} = \lim_{\omega \to \infty} (K_p(\omega) - \omega)$$
$$= \lim_{\zeta \to \infty} (\zeta - k_p(\zeta)) = -(p + p^{-1}),$$

and by Cauchy formula

(3.5)

$$K_{p,n} = -\frac{1}{2n\pi i} \oint \omega^n K_p'(\omega) d\omega$$

$$= -\frac{1}{2n\pi i} \int_{|\zeta|=r>p} k_p(\zeta)^n d\zeta$$

$$= -\frac{1}{n} \sum_{k=0}^{n-1} \binom{n}{k} \binom{n}{k+1} p^{n-2k-1}$$

and

(3.6)
$$L_{p,n} = \frac{1}{2n\pi i} \int_{|\zeta|=r < p} k_p(\zeta)^{-n} d\zeta$$
$$= -\frac{1}{n} \sum_{k=0}^{\infty} \binom{n+k-1}{n-1} \binom{n+k}{n-1} p^{-(n+2k+1)}.$$

The main result of this paper is the following.

3.7. THEOREM: If G is the inverse of a function $g \in \Sigma(p)$ which has expansions (1.1) and (3.1) near $\omega = \infty$ and $\omega = 0$, respectively, then

$$|B_0| \le |K_{p,0}| = p + p^{-1},$$

and for n = 1, 2, ...,

$$(3.9) |B_{2n-1}| \le |K_{p,2n-1}|,$$

(3.10)
$$|B_{2n}| \le \sqrt{|K_{p,2n-1}||K_{p,2n+1}|}$$

and

$$(3.11) |A_n| \le |L_{p,n}|.$$

Equality for a single coefficient holds in (3.8), (3.9) or (3.11) only if $g(\zeta) = k_p(\zeta)$.

The proof of Theorem 3.7 depends on the following lemma which is a consequence of Lemma 2.6.

3.12. LEMMA: Let G be the inverse of $g \in \Sigma$ and let G and G^{-m} have expansions (1.1) and

(3.13)
$$G(\omega)^{-m} = \sum_{n=m}^{\infty} B_n^{(-m)} \omega^{-n},$$

respectively, near $\omega = \infty$. Then for $n = 1, 2, \ldots$,

(3.14)
$$|B_{2n-1}| \le \sum_{m=1}^{n} |B_n^{(-m)}|^2$$

and

(3.15)
$$|B_{2n}|^2 \le \sum_{m=1}^n |B_n^{(-m)}|^2 \sum_{m=1}^{n+1} |B_{n+1}^{(-m)}|^2.$$

Proof: We may choose $1 < \rho < \infty$ so that $G(\omega)$ is analytic in $\rho < |\omega| < \infty$. Then

$$\frac{G(w) - G(\omega)}{w - \omega} = 1 + \sum_{n=1}^{\infty} \sum_{i=0}^{n-1} B_n w^{-i-1} \omega^{i-n}$$

is analytic in $\rho < |w|, |\omega| < \infty$ with respect to each variable. For any integers $j, k \ge 0$, let

$$F_1(w) = w^j$$
 and $F_2(\omega) = \omega^k$

in (2.7). Then by Cauchy formula, the double integral on the left side of (2.7) reduces to

$$\sum_{n=1}^{\infty} \sum_{i=0}^{n-1} B_n \iint_{|w|=|\omega|=r>\rho} w^{j-i-1} \omega^{k+i-n} dw d\omega$$
$$= 2\pi i \sum_{n=j+1}^{\infty} B_n \int_{|\omega|=r} \omega^{k+j-n} d\omega$$
$$= (2\pi i)^2 B_{k+j+1}.$$

Similarly,

$$\int_{|w|=r} w^{j} G(w)^{-n} dw = \begin{cases} 2\pi i B_{j+1}^{(-n)}, & \text{if } 0 < n \le j+1, \\ 0, & \text{otherwise.} \end{cases}$$

Thus it follows from (2.7) that

$$(3.16) |B_{j+k+1}|^2 \le \sum_{m=1}^{j+1} |B_{j+1}^{(-m)}|^2 \sum_{m=1}^{k+1} |B_{k+1}^{(-m)}|^2$$

for all $j, k \ge 0$. Letting j = k = n - 1 and letting j = n - 1, k = n in (3.16) yield (3.14) and (3.15), respectively, as desired.

3.17. Remark: The equality in (3.14) holds for any n if $g(\zeta) = k_p(\zeta)$, where $k_p(\zeta)$ is defined in (2.2). To see this we note that (3.14) is derived from (2.7) by letting $F_1(w) = F_2(w) = w^{n-1}$. Thus we only need to show that equality in

S. YANG

(2.7) holds for $g = k_p$ in this particular case. In fact, under change of variables $w = k_p(z)$ and $\omega = k_p(\zeta)$, the double integral on the left side of (2.7) reduces to

(3.18)
$$\sum_{j=0}^{\infty} (\int_{|z|=r'} k'_p(z) k_p(z)^{n-1} z^{-j} dz)^2,$$

while both sums on the right side of (2.7) reduce to

(3.19)
$$\sum_{j=0}^{\infty} |\int_{|z|=r'} k'_p(z)k_p(z)^{n-1}z^{-j}dz|^2.$$

Since for each j, the integral in (3.18) is a pure imaginary number, the expressions in (3.18) and (3.19) have the same absolute value. Therefore (2.7) holds with equality in this case, and hence the equality in (3.14) holds when $g = k_p$.

3.20. Remark: Inequality (3.14) can also be derived from a Grunsky inequality of functional type, see for example [Sc, (3)], by choosing appropriate functionals on the space of meromorphic functions.

Proof of Theorem 3.7: To prove (3.8) we observe that if $g \in \Sigma(p)$ then $f(z) = g(1/z)^{-1} \in S(1/p)$ and the magnitude of B_0 equals to the magnitude of the second coefficient of the inverse function of f. Thus inequality (3.8) and its sharpness follows from [BS, Theorem 2 (8), n=2].

To prove (3.9) and (3.10), we expand

(3.21)
$$G(\omega)^{-m} = \sum_{n=m}^{\infty} B_n^{(-m)} \omega^{-n},$$

(3.22)
$$\frac{\omega[G(\omega)^{-m}]'}{G(\omega)^{-m}} = -n + \sum_{k=1}^{\infty} M_k^{(-m)} \omega^{-k},$$

(3.23)
$$K_p(\omega)^{-m} = \sum_{n=m}^{\infty} K_n^{(-m)} \omega^{-n},$$

and

(3.24)
$$\frac{\omega [K_p(\omega)^{-m}]'}{K_p(\omega)^{-m}} = -n + \sum_{k=1}^{\infty} C_{p,k}^{(-m)} \omega^{-k}$$

Vol. 87, 1994

near $\omega = \infty$. By Cauchy formula again,

$$\begin{split} M_k^{(-m)} &= -\frac{m}{2\pi i} \oint \frac{\omega^k G'(\omega)}{G(\omega)} d\omega \\ &= -\frac{m}{2\pi i} \int_{|\zeta|=r} g(\zeta)^k \zeta^{-1} d\zeta \\ &= -\frac{m}{2\pi} \int_0^{2\pi} g(r e^{i\theta})^k d\theta. \end{split}$$

Since g is univalent in $\tilde{\Delta}$ and $g(\infty) = \infty$, $g(re^{i\theta})$ is bounded as $r \to 1^+$. Thus letting $r \to 1^+$, the integral mean inequality (2.4) yields

(3.25)
$$|M_{k}^{(-m)}| \leq \frac{m}{2\pi} \int_{0}^{2\pi} |g(e^{i\theta})|^{k} d\theta$$
$$\leq \frac{m}{2\pi} \int_{0}^{2\pi} |k_{p}(e^{i\theta})|^{k} d\theta$$
$$= \frac{m}{2\pi} \int_{0}^{2\pi} k_{p}(e^{i\theta})^{k} d\theta = |C_{p,k}^{(-m)}|$$

for k = 1, 2, ... An argument similar to [BS, p.80] shows that for k = 1 we have equality throughout (3.25) only if $g(\zeta) = k_p(\zeta)$. Now we can use the induction method to prove that

$$(3.26) |B_n^{(-m)}| \le |K_n^{(-m)}|$$

for all $n \ge m$. It is easy to see that (3.26) holds for n = m since

$$B_m^{(-m)} = K_m^{(-m)} = 1.$$

Suppose that (3.26) holds for all $n = m+1, m+2, \ldots, N-1$. From the expansions (3.21) and (3.22) it follows that the coefficients $B_n^{(-m)}$ and $M_k^{(-m)}$ satisfy the identity

$$-(n-m)B_n^{(-m)} = \sum_{k=1}^{n-m} M_k^{(-m)} B_{n-k}^{(-m)}.$$

Similarly, $K_n^{(-m)}$ and $C_{p,k}^{(-m)}$ satisfy

$$-(n-m)K_n^{(-m)} = \sum_{k=1}^{n-m} C_{p,k}^{(-m)} K_{n-k}^{(-m)}.$$

Isr. J. Math.

Since $C_{p,k}^{(-m)} \leq 0$, it follows that $K_n^{(-m)} \geq 0$ for all $n \geq m$. Thus by (3.25) and the assumption on (3.26), we obtain

$$(N-m)|B_{N}^{(-m)}| \leq \sum_{k=1}^{N-m} |M_{k}^{(-m)}||B_{N-k}^{(-m)}|$$

$$\leq \sum_{k=1}^{N-m} |C_{p,k}^{(-m)}||K_{N-k}^{(-m)}|$$

$$= -\sum_{k=1}^{N-m} C_{p,k}^{(-m)} K_{N-k}^{(-m)} = (N-m)|K_{N}^{(-m)}|.$$

This proves (3.26). Thus it follows from (3.14), (3.15) and Remark 3.17 that

$$|B_{2n-1}| \le \sum_{m=1}^{n} |K_n^{(-m)}|^2 = |K_{p,2n-1}|$$

and

$$|B_{2n}|^2 \le \sum_{m=1}^n |K_n^{-m}|^2 \sum_{m=1}^{n+1} |K_{n+1}^{(-m)}|^2 = |K_{p,2n-1}| |K_{p,2n+1}|.$$

This proves the inequalities (3.9) and (3.10).

For n = 1 (3.9) reduces to $|B_1| \leq 1$. Since $B_1 = -b_1$, the equality in (3.9) holds for n = 1 only if $|b_1| = 1$. By the well known area principle for the class Σ , see for example [Du, Theorem 2.1], this can happen only if $g = k_p$. From the process of deriving (3.9), one can see that the equality in (3.9) holds for n > 1 only if (3.25) holds with equality for k = 1. This can happen only if $g = k_p$.

For the proof of (3.11), we expand the following functions

(3.28)
$$\frac{\omega G'(\omega)}{G(\omega)} = \sum_{n=1}^{\infty} N_n \omega^n$$

and

(3.29)
$$\frac{\omega K'_p(\omega)}{K_p(\omega)} = \sum_{n=1}^{\infty} D_{p,n} \omega^n$$

near $\omega = 0$. Similar to (3.25) we obtain

(3.30)
$$|N_{n}| \leq \frac{1}{2\pi} \int_{0}^{2\pi} |g(e^{i\theta})|^{-n} d\theta$$
$$\leq \frac{1}{2\pi} \int_{0}^{2\pi} |k_{p}(e^{i\theta})|^{-n} d\theta = D_{p,n}$$

and the equality holds for n = 1 only if $g = k_p$. From expansions (3.1) and (3.28), it follows that

$$nA_n = -pN_n + \sum_{i=1}^{n-1} N_i A_{n-i}.$$

Similarly, $L_{p,n}$ and $D_{p,n}$ satisfy

$$nL_{p,n} = -pD_{p,n} + \sum_{i=1}^{n-1} D_{p,i}L_{p,n-i}.$$

By induction method, one can easily show that

$$\begin{aligned} n|A_n| &\leq p|N_n| + \sum_{i=1}^{n-1} |N_i| |A_{n-i}| \\ &\leq pD_{p,n} + \sum_{i=1}^{n-1} |D_{p,i}| |L_{p,n-i}| = n |L_{p,n}| \end{aligned}$$

Thus (3.11) follows. Furthermore, the equality in (3.11) can occur for a single n only if it can occur for n = 1. And by (3.30) it can happen only if $g(\zeta) = k_p(\zeta)$. This completes the proof of Theorem 3.7.

3.31. Remarks: Inequality (3.10) is asymptotically sharp as $n \to \infty$. To verify this we note that

(3.32)
$$\frac{|K_{p,n+1}|}{|K_{p,n}|} = \frac{\frac{(n!)^2 p^{n-3}}{n+1} \sum_{i=0}^{n} \frac{(n+1)^2 p^{-2i}}{i!(n+1-i)!(i+1)!(n-i)!}}{\frac{(n!)^2 p^{n-1}}{n} \sum_{i=0}^{n-1} \frac{p^{-2i}}{i!(n-i)!(i+1)!(n-i-1)!}}$$

Since p > 1, it is easy to see that both sums in (3.32) converge as $n \to \infty$. Thus $|K_{p,n+1}|/|K_{p,n}|$ converges as $n \to \infty$. This proves that

$$\frac{|K_{p,2n}|^2}{|K_{p,2n-1}||K_{p,2n+1}|} \longrightarrow 1$$

as $n \to \infty$. Thus (3.10) is asymptotically sharp. It is still an open problem to obtain the sharp upper bound for $|B_{2n}|$. But it is natural to conjecture that

$$|B_{2n}| \le |K_{p,2n}|.$$

The proof of Theorem 3.7 depends on both the integral mean inequality (2.4) and Lemma 3.12. We point out that the method of Baernstein and Schober

[BS] by which they obtained sharp estimates for the class S(p) does not apply immediately to the class $\Sigma(p)$ which has been considered here.

Obviously the method that is used to establish Theorem 3.7 applies immediately to the class of nonvanishing meromorphic univalent functions which Netanyahu [Ne] considered. But the resulting estimates are sharp only for odd integers and zero.

4. The class S

Let S denote the well known class of all analytic univalent functions f(z) in Δ with the normalization f(0) = 0 and f'(0) = 1. Then the inverse function F(w)of $f \in S$ has the expansion

(4.1)
$$F(w) = w + \sum_{n=2}^{\infty} A_n w^n$$

near w = 0. Using a variational method, Löwner [Lö] obtained the following sharp estimates.

4.2. THEOREM ([Lö]): If F(w) is the inverse of a function $f \in S$ and has expansion (4.1) near w = 0, then

(4.3)
$$|A_n| \le \frac{(2n)!}{n!(n+1)!}$$

for n = 2, 3, ... The equality occurs for a single coefficient if and only if f(z) is the Koebe function $k(z) = z/(1-z)^2$ or its rotation.

Alternate proofs have been given by several authors, see for example [SS], [Fi] and [BS]. Here we give another new and elementary proof for this remarkable result.

Proof of Theorem 4.2: For $n = 0, 1, 2, \ldots$, let

$$c_n = \frac{(2n)!}{n!(n+1)!}.$$

Then the inverse function $K(\omega)$ of $k(\zeta) = \zeta + \zeta^{-1} \in \Sigma$ has the expansion

$$K(\omega) = \omega - \sum_{n=0}^{\infty} c_n \omega^{-(2n+1)}$$

near $\omega = \infty$. From the identity

$$\zeta^2 = \omega K(\omega) - 1 = (K(\omega))^2$$

we obtain that

(4.4)
$$c_n = \sum_{i=0}^{n-1} c_i c_{n-i-1}.$$

This identity can also be easily verified by induction.

Next we see that if $f(z) \in S$, then

$$g(\zeta) = rac{1}{f(1/\zeta)} \in \Sigma ext{ and } g(\zeta)
eq 0.$$

Suppose the inverses of f and g have expansions (4.1) and (1.1), respectively. Then from the identity

$$G(w^{-1})F(w) = 1$$

we obtain

(4.5)
$$A_n = -B_0 A_{n-1} - \sum_{i=1}^{n-2} B_i A_{n-i-1}.$$

Therefore, by induction, (4.3) follows from (1.3) and the identities (4.4) and (4.5).

4.6. Remark: The above proof suggests an elementary way of deriving sharp bounds for the inverse coefficients of functions defined in Δ from sharp bounds about the corresponding classes of functions defined in $\tilde{\Delta}$. Unfortunately, this process can not be reversed.

References

- [Ba] A. Baernstein II, Integral means, univalent functions and circular symmetrization, Acta Math. 133 (1974), 139–169.
- [BS] A. Baernstein II and G. Schober, Estimates for inverse coefficients of univalent functions from integral means, Israel J. Math. 36 (1980), 75-82.
- [Du] P. Duren, Univalent functions, Springer-Verlag, New York, 1983.
- [Fi] C. H. FitzGerald, Quadratic inequalities and coefficients estimates for schlicht functions, Arch. Rational Mech. Anal. 46 (1972), 356-368.

- [KS] W. E. Kirwan and G. Schober, Extremal problems for meromorphic univalent functions, J. d'Analyse Math. 30 (1976), 330-348.
- [Lö] K. Löwner, Untersuchungen über schlichte konforme Abbildungen des Einheitskreises I, Math. Ann. 89 (1923), 103-121.
- [Ne] E. Netanyahu, Extremal problems for schlicht functions in the exterior of the unit circle, Canad. J. Math. 17 (1965), 335-341.
- [Re] F. Ren, Stronger distortion theorems of univalent functions and its applications, Chinese. Ann. Math. 4B (1983), 425-441.
- [SS] A. C. Schaeffer and D. C. Spencer, The coefficients of schlicht functions II, Duke Math. J. 12 (1945), 107–125.
- [Sc] G. Schober, Coefficients of inverses of meromorphic univalent functions, Proc. Amer. Math. Soc. 67 (1977), 111-116.